miércoles, 29 de diciembre de 2010

6th grade Reading # 2 Questions, Education in the Middle Ages

1. Why did Charlemagne want his officials to read?

2. When did Rome fall?

3. Why did the Franks not like the idea of learning to read and write?

4. Why couldn't Charlemagne write?

6th grade Reading #2, Education in Middle Ages

Education: After the fall of Rome in 476 CE, the ability to read and write began to disappear. Soon, the only people left with these skills were the clergy, and not even all of them had these abilities.
To effectively rule his kingdom, and to successfully convert people to Christianity, Charlemagne wanted his officials to be able to read and write. If he sent them a note, giving them some instruction, he wanted to make sure they could read it. 
To accomplish this, he turned his own palace into a center for learning. Scholars came from all over Europe to teach in the palace school. 
Charlemagne knew how to read, but he did not know how to write. He attempted to learn, but his hands were too scared from battle to write legibly. Charlemagne tried to talk other nobles into joining him in his educational pursuits, but they were quite resistant. It was not the Frankish way. The Frankish nobles thought reading and writing was a waste of time. They were warriors. 

The Mysterious Maya

  1. Where were the Maya from?

  1. What material were their tools made of?

  1. How long did the Maya rule Central America?

4. What is the main idea of this reading?

5th grade Reading #2 The Mysterious Maya

A long time ago, around 2500 BCE, an ancient tribe of Central American Indians called the Olmecs settled in the rainforests of the Yucatan Peninsula of Central America.
About two thousand years later, around 400 BCE, a new people suddenly appeared. These people were called the Maya. No one knows where they came from, but they arrived with amazing skills. They were an advanced civilization. They soon took over the Yucatan Peninsula of Central America. 
The Maya were very clever people. Their system of mathematics was among the most sophisticated in the ancient world. Like the ancient Romans, the Mayas were master builders. Unlike the ancient Romans, the ancient Mayas did not have metal tools. Their tools were made of stone, bone, and wood. Yet they built beautiful structures, huge cities, and excellent roads - roads that connected the many hundreds of cities that made up the Maya world. 
Around 900 CE, the Maya cities were  abandoned. A few people continued to live in the cities, but mostly, the cities were empty. The people had, for the most part, disappeared, gone somewhere else.  Those who remained were unable or unwilling to repair the magnificent roads and buildings. The great Maya cities fell into ruin. 
To this day, nobody knows where the Maya people came from before they arrived in the Yucatan Peninsula, and nobody knows why they left or where they went when most of the Maya people abandoned their cities and disappeared from the Yucatan Peninsula. That's why the Maya are sometimes referred to as "the mysterious Mayas". 
During the 1500 years or so that the Maya Indians made their home in Central America, they build hundreds of religious centers, each filled with huge pyramids and  elaborate temples. There was at least one ball court in every city. Excellent roads ran for miles through the jungles and swamps, linking these centers of religion and learning. 
Today, archaeologists remain very curious about these ancient people. Archaeologists face many dangers to hunt for the ruins of the ancient Maya cities hidden deep in the jungles of Central America. 
There are not many, but there are some Maya people still living in Central America, descendants of the ancient Mayas who remained behind in the nearly deserted cities. Still today, their crafts are amongst the most beautiful in the world. 

Mensaje del Maestro Armando/Message from Mr. Armando

Students, I hope everyone had a Merry Christmas and are enjoying your vacation. I have posted the Reading 1 for 5th and 6th as well as some questions for each.

Remember, they are due Monday when we get back.

Take care and be good!

6th grade Reading #1 Columbus at La Rabida

6th grade Reading #1 Columbus at La Rabida


  1. Who is the stranger mentioned in the story and who was with him?


  1. How many years did Columbus try and fail to convince the king and queen to support his voyage?

  1. Who was Juan Perez and what is his importance?

5th grade Reading #1 The First Landing of Columbus in the New World Questions

5th grade Reading #1 The First Landing of Columbus in the New World Questions




1.      What was the date that Columbus landed in the New World?

2.      What did Columbus do when he landed in the New World?

3.      What did the initials “F” and “Y” stand for?

martes, 21 de diciembre de 2010

6th grade Reading #1 Columbus at La Rabida

About half a league from the little seaport of Palos de Moguer, in Andalusia, there stood, and continues to stand at the present day, an ancient convent of Franciscan friars, dedicated to Santa Maria de Rabida.
One day a stranger on foot, in humble guise, but of a distinguished air, accompanied by a small boy, stopped at the gate of the convent and asked of the porter a little bread and water for his child. While receiving this humble refreshment, the prior of the convent, Juan Perez de Marchena, happened to pass by, and was struck with the appearance of the stranger. Observing from his air and accent that he was a foreigner, he entered into conversation with him and soon learned the particulars of his story.
That stranger was Columbus.
Accompanied by his little son Diego, he was on his way to the neighboring town of Huelva, to seek a brother-in-law, who had married a sister of his deceased wife.
The prior was a man of extensive information. His attention had been turned in some measure to geographical and nautical science. He was greatly interested by the conversation of Columbus, and struck with the grandeur of his views. When he found, however, that the voyager was on the point of abandoning Spain to seek the patronage of the court of France, the good friar took the alarm.
He detained Columbus as his guest, and sent for a scientific friend to converse with him. That friend was Garcia Fernandez, a physician of Palos. He was equally struck with the appearance and conversation of the stranger. Several conferences took place at the convent, at which veteran mariners and pilots of Palos were present.
Facts were related by some of these navigators in support of the theory of Columbus. In a word, his project was treated with a deference in the quiet cloisters of La Rabida and among the seafaring men of Palos which had been sought in vain among sages and philosophers.
Among the navigators of Palos was one Martin Alonzo Pinzon, the head of a family of wealth, members of which were celebrated for their adventurous expeditions. He was so convinced of the feasibility of Columbus's plan that he offered to engage in it with purse and person, and to bear the expenses of Columbus in an application to court.
Fray Juan Perez, being now fully persuaded of the importance of the proposed enterprise, advised Columbus to repair to the court, and make his propositions to the Spanish sovereigns, offering to give him a letter of recommendation to his friend, the Prior of the Convent of Prado and confessor to the queen, and a man of great political influence; through whose means he would, without doubt, immediately obtain royal audience and favor. Martin Alonzo Pinzon, also, generously furnished him with money for the journey, and the Friar took charge of his youthful son, Diego, to maintain and educate him in the convent.
Thus aided and encouraged and elated with fresh hopes, Columbus took leave of the little junto at La Rabida, and set out, in the spring of 1486, for the Castilian court, which had just assembled at Cordova, where the sovereigns were fully occupied with their chivalrous enterprise for the conquest of Granada. But alas! Success was not yet - for Columbus met with continued disappointments and discouragements, while his projects were opposed by many eminent prelates and Spanish scientists, as being against religion and unscientific. Yet in spite of this opposition, by degrees the theory of Columbus began to obtain proselytes. He appeared in the presence of the king with modesty, yet self-possession, inspired by a consciousness of the dignity and importance of his errand; for he felt himself, as he afterwards declared in his letters, animated as if by a sacred fire from above, and considered himself an instrument in the hand of Heaven to accomplish its great designs. For nearly seven years of apparently fruitless solicitation, Columbus followed the royal court from place to place, at times encouraged by the sovereigns, and at others neglected.
At last he looked round in search of some other source of patronage, and feeling averse to subjecting himself to further tantalizing delays and disappointments of the court, determined to repair to Paris. He departed, therefore, and went to the Convent of La Rabida to seek his son Diego. When the worthy Friar Juan Perez de Marchena beheld Columbus arrive once more at the gate of his convent after nearly seven years of fruitless effort at court, and saw by the humility of his garb the poverty he had experienced, he was greatly moved, but when he found that he was about to carry his proposition to another country, his patriotism took alarm.
The Friar had once been confessor to the queen, and knew that she was always accessible to persons of his sacred calling. He therefore wrote a letter to her, and at the same time entreated Columbus to remain at the convent until an answer could be received. The latter was easily persuaded, for he felt as if on leaving Spain he was again abandoning his home.
The little council at La Rabida now cast round their eyes for an ambassador to send on this momentous mission. They chose one Sebastian Rodriguez, a pilot of Lepe, one of the most shrewd and important personages in this maritime neighborhood. He so faithfully and successfully conducted his embassy that he returned shortly with an answer.
Isabella had always been favorably disposed to the proposition of Columbus. She thanked Juan Perez for his timely services and requested him to repair immediately to the court, leaving Columbus in confident hope until he should hear further from her. This royal letter, brought back by the pilot at the end of fourteen days, spread great joy in the little junto at the convent.
No sooner did the warm-hearted friar receive it than he saddled his mule, and departed, privately, before midnight to the court. He journeyed through the countries of the Moors, and rode into the new city of Santa Fe where Ferdinand and Isabella were engaged in besieging the capital of Granada.
The sacred office of Juan Perez gained him a ready admission into the presence of the queen. He pleaded the cause of Columbus with enthusiasm. He told of his honorable motives, of his knowledge and experience, and his perfect capacity to fulfill the undertaking. He showed the solid principles upon which the enterprise was founded, and the advantage that must attend its success, and the glory it must shed upon the Spanish Crown.
Isabella, being warm and generous of nature and sanguine of disposition, was moved by the representations of Juan Perez, and requested that Columbus might be again sent to her. Bethinking herself of his poverty and his humble plight, she ordered that money should be forwarded to him, sufficient to bear his traveling expenses, and to furnish him with decent raiment.
The worthy friar lost no time in communicating the result of his mission. He transmitted the money, and a letter, by the hand of an inhabitant of Palos, to the physician, Garcia Fernandez, who delivered them to Columbus The latter immediately changed his threadbare garb for one more suited to the sphere of a court, and purchasing a mule, set out again, reanimated by hopes, for the camp before Granada.
This time, after some delay, his mission was attended with success. The generous spirit of Isabella was enkindled, and it seemed as if the subject, for the first time, broke upon her mind in all its real grandeur. She declared her resolution to undertake the enterprise, but paused for a moment, remembering that King Ferdinand looked coldly on the affair, and that the royal treasury was absolutely drained by the war.
Her suspense was but momentary. With an enthusiasm worthy of herself and of the cause, she exclaimed: "I undertake the enterprise for my own crown of Castile, and will pledge my jewels to raise the necessary funds." This was the proudest moment in the life of Isabella. It stamped her renown forever as the patroness of the discovery of the New World.

5th grade Reading #1 The First Landing of Columbus in the New World

It was on Friday morning, the 12th of October, that Columbus first beheld the New World. As the day dawned he saw before him an island, several leagues in extent, and covered with trees like a continual orchard. Though apparently uncultivated it was populous, for the inhabitants were seen issuing from all parts of the woods and running to the shore. They were perfectly naked, and, as they stood gazing at the ships, appeared by their attitudes and gestures to be lost in astonishment.
Columbus made signals for the ships to cast anchor and the boats to be manned and armed. He entered his own boat, richly attired in scarlet, and holding the royal standard; while Martin Alonzo Pinzon and his brother put off in company in their boats, each with a banner of the enterprise emblazoned with a green cross, having on either side the letters "F."' and "Y.," the initials of the Castilian monarchs Fernando and Ysabel, surmounted by crowns.
As he approached the shore, Columbus was delighted with the purity and suavity of the atmosphere, the crystal transparency of the sea, and the extraordinary beauty of the vegetation. He beheld also fruits of an unknown kind upon the trees which overhung the shores.
On landing he threw himself on his knees, kissed the earth, and returned thanks to God with tears of joy. His example was followed by the rest. "Almighty and Eternal God," prayed Columbus, "who by the energy of Thy creative word hast made the firmament, the earth and the sea - blessed and glorified be thy name in all places! May thy majesty and dominion be exalted for ever and ever, as Thou hast permitted thy holy name to be made known and spread by the most humble of thy servants, in this hitherto unknown portion of Thine empire."
Columbus, then rising, drew his sword, displayed the royal standard, and assembling around him the two captains and the rest who had landed, he took solemn possession in the name of the Castilian sovereigns, giving the island the name of San Salvador.

miércoles, 15 de diciembre de 2010

Study Guide 5th grade

Study Guide 5th grade

Vocabulary Write the DEFINITION and write a SENTENCE

Permit, subject, worthless, scoundrel, admiringly, depressed, achieved, philosopher, architect, fashioned, midst, bronze, cannon, rival.

Solving Equations:

  1. a + 3 = 35 ________
  2. 1 + e = 21________
  3. 3.18n = 31.9 _________
  4. 45/p = 5 ________
  5. 7m = 56 ________

Look for a pattern.

  1. 80, 70, 60, _______, __________
  2. 1, 2, 4, 7, 11, 16, _________, __________, _________
  3. 1, 3, 9, 27, ____________, ___________, __________
  4. 343, 443, 543, __________, __________, __________
  5. 103, 203, 303, __________, __________, __________

Dividing Decimals

89.15 / 5                     92.24 / 24.2                            100.25 / 5.5


Spelling words: Know the correct spelling of each.

Waterproof
Teaspoon
Grasshopper
Homesick
Barefoot
Courthouse
Earthquake
Rowboat
Scrapbook
Countryside
Jewel
Kingdom
Gasoline
Factory
Garage
Tropical
Pajamas
Estimate
Tomorrow
Humidity

Reading. There will be questions of the following stories in the Reading book-
Leonardo’s Horse,

Study Guide 6th grade

Study Guide 6th grade

Give each missing power of ten

  1. 167, 230, 000 = 1.6723 x ________
  2. 0.000872 = 8.72 x ___________

  1. 657 ____________

  1. 0.00498 __________

  1. 0.000123 ___________

Solve Equations with Decimals

  1. a + 0.6 = 3 _____________
  2. s – 17.2 = 36.7 __________
  3. x + 0.031 = 0.348 _________
  4. 9.76 = t – 1.66 __________

Multiplying and Dividing by powers of ten

  1. 72.1 x 10 __________
  2. 450 x 10 __________
  3. 3.103 x 10 _________
  4. 167.4 x 10 __________
  5. 0.012 x 10 __________
  6. 8.235 x 10 __________

Vocabulary – Write the definition and write a sentence with each

Registered, stiffened, smoldered, hatchet, ignite, quill, opera, formal, recital, prejudice, privileged, application, momentous, dramatic, enraged, customary, emphasized, stunned, frantic, treaded.

Spelling- know the correct spelling of each.

Nuclear, helicopter, anxious, appreciate, plastic, international, prehistoric, untrustworthy, constellation, honorary, crescent, language, vehicle, exhibit, examine.

There will be questions of the following stories from the Reading Book.

Hatchet,
When Marian Sang,
Learning to Swim.

miércoles, 24 de noviembre de 2010

“El entorno físico”, en Ciencia: conocimiento para todos

Capítulo 4: EL ENTORNO FÍSICO

Los seres humanos siempre han mostrado interés en tratar de descubrir la forma en que se creó el universo, la manera en que funciona y el sitio que ocupa en el esquema cósmico de las cosas. El desarrollo de la comprensión de la arquitectura del universo seguramente no es completo, pero se han hecho grandes progresos. Un universo que está constituido por distancias demasiado vastas para poderse alcanzar y de partículas tan pequeñas que no se pueden ver y tan numerosas que resultan incontables, es un tributo a la inteligencia humana, en la que se ha ido progresando a medida que se va explicando la manera en que se originan las cosas. Todos los seres humanos deberían participar en el placer de conocer mejor su entorno.
Este capítulo lo conforman recomendacionés para el conocimiento básico de la estructura general del universo y los principios fisicos sobre los cuales parece correr, haciendo hincapié en la Tierra y el sistema solar. El capítulo se centra además en dos asuntos fundamentales: 1. la estructura del universo y los procesos principales que le han dado forma al planeta Tierra, y 2. los conceptos con los cuales la ciencia describe el mundo fisico en general organizado por conveniencia con los nombres de materia, energía, movimiento y fuerzas. Comienzo

EL UNIVERSO

El universo es grande y antiguo, según los parámetros vacilantes de la mente humana. La Tierra ha existido durante sólo una tercera parte de la historia del universo y es, en comparación, una particula en el espacio. El Sol es una estrella de tamaño intermedio que se mueve en una órbita cercana al borde del brazo de una galaxia ordinaria en forma de disco, parte de la cual se puede ver como una gran banda esplendente que se extiende en el cielo en una noche clara (la Vía Láctea). Esta galaxia contiene muchos miles de millones de estrellas, y el universo contiene muchos miles de millones de tales galaxias, algunas de las cuales se pueden ver a simple vista como manchas borrosas en una noche despejada.
Utilizando los cohetes más rápidos que se conocen tomaria miles de años llegar a la estrella más cercana al Sol. Incluso la luz procedente de la estrella más cercana se tarda cuatro años para llegar hasta nosotros. Y la luz que llega desde las galaxias más lejanas fue emitida en un momento cercano al inicio del universo. Por eso, cuando se miran las estrellas, se está observando su pasado.
Hay un número asombroso de tipos diferentes de estrellas que son mucho más grandes o mucho más pequeñas, mucho más calientes o mucho más frias, mucho más antiguas o mucho más recientes que el Sol. La mayor parte de ellas, al parecer, no están aisladas como estrellas solitarias, como lo está el Sol, sino que son parte de sistemas de dos o más estrellas que giran en órbitas alrededor de un centro de masa común. Asimismo, hay otras galaxias y grupos de galaxias distintas de la nuestra en tamaño, forma y dirección del movimiento. Pero, a pesar de esta variedad, todas están compuestas de los mismos elementos, fuerzas y formas de energía encontradas en nuestro sistema solar y galaxia, y al parecer se comportan de acuerdo con los mismos principios fisicos.
Tal parece que todo el contenido del universo conocido se expandió de manera explosiva hacia la existencia a partir de una masa única, densa, caótica, caliente hace más de diez mil millones de años. Las estrellas nacen en nubes de elementos más ligeros (hidrógeno y helio), se calientan por la energía de gravedad y comienzan a liberar energía nuclear por la fusión de elementos ligeros en otros más pesados dentro de sus núcleos en extremo densos y calientes. A la larga, muchas estrellas explotan, produciendo nuevas nubes a partir de las cuales otras estrellas, y supuestamente los planetas que giran alrededor de ellas, se condensan. El proceso de formación de estrellas continúa. Las estrellas se forman y por último se disipan, y la materia y la energía sufren cambios morfológicos como lo han hecho durante miles de millones de años.
El sistema solar se originó a partir de una nube gigantesca de gas y restos que quedaron tras la explosión de estrellas hace aproximadamente cinco mil millones de años. Todo en la Tierra y sobre ella, incluyendo a los organismos vivos, está hecho de este material. Cuando la Tierra y otros planetas se formaron, los elementos más pesados cayeron a su centro. En los planetas que están cerca del Sol (Mercurio, Venus, Tierra y Marte), los elementos más ligeros fueron alejados o evaporados por la radiación desde el Sol recién formado; en los planetas más lejanos (Júpiter, Saturno, Urano, Neptuno y Plutón), los elementos más ligeros todavía los circundan como atmósferas profundas de gas o como capas sólidas congeladas.
En total hay nueve planetas de tamaño, composición y características de superficie muy diferentes que se mueven alrededor del Sol en órbitas casi circulares. Alrededor de los planetas giran una gran variedad de lunas y, en algunos casos, anillos planos de rocas y restos de hielo, o, en el caso de la Tierra, una luna, y satélites artificiales. Las características de muchos de los ,planetas y sus lunas muestran evidencias de procesos de desarrollo similares a aquellos que ocurren en la Tierra, como sismos, flujos de lava y erosión.
También existe una gran cantidad de cuerpos rocosos y de hielo más pequeños que giran alrededor del Sol. Cuando la Tierra en su órbita anual alrededor del Sol encuentra a algunos de ellos, éstos brillan y se desintegran por fricción a medida que ingresan en la atmósfera y en ocasiones se impactan contra el suelo. Otros restos de roca y hielo tienen órbitas tan largas y excéntricas que periódicamente se acercan mucho al Sol, en donde algo del material de su superficie se evapora por la radiación solar y es impulsado en una larga cauda iluminada que se observa como un cometa.
El conocimiento creciente del sistema solar y del resto del universo se adquiere por observación directa pero sobre todo mediante el uso de instrumentos que se han desarrollado para extender y suplir los propios sentidos. Estas herramientas incluyen radiotelescopios y telescopios de rayos x, que son sensibles a un amplio espectro de información que llega del espacio; computadoras que pueden llevar a cabo cálculos cada vez más complicados de sistemas gravitacionales o reacciones nucleares, encontrando pautas en los datos y deduciendo las implicaciones de teorías; sondas espaciales que envían de regreso fotografías detalladas y otros datos desde planetas distantes en el sistema solar, y enormes "desintegradores de átomos" que simulan condiciones del universo primitivo e indagan el funcionamiento interno de los átomos.
La mayor parte de lo que se cree saber acerca del universo debe inferirse a partir del uso de todas estas herramientas para investigar secciones muy pequeñas de espacio y tiempo. Lo que se sabe sobre las estrellas está basado en el análisis de la luz que llega de ellas. Lo que se conoce acerca del interior de la Tierra se basa en mediciones que se hacen en su superficie o cerca de ella o con satélites que giran sobre la superficie. Lo que se sabe sobre la evolución del Sol y los planetas procede del estudio de la radiación de una pequeña muestra de estrellas, características visuales de los planetas y muestras de material (como piedras, meteoritos y otras provenientes de la Luna y Marte), e imaginando la manera en que llegaron a ser lo que son. Comienzo

LA TIERRA

Vivimos en un planeta bastante pequeño, el tercero alrededor del Sol en el único sistema de planetas que se sabe definitivamente que existe, aunque es probable que sistemas similares sean comunes en el universo. La forma de la Tierra es casi esférica, como la de todos los planetas y las estrellas, la cual es resultado de la atracción gravitacional mutua que jala su material hacia un centro común. A diferencia de los planetas externos, mucho más grandes, que están formados principalmente de gas, la Tierra es sobre todo roca, con tres cuartas partes de su superficie cubiertas por una capa relativamente delgada de agua y todo el planeta envuelto por una capa tenue de aire. En ambos lados del planeta, se forman abultamientos en la capa de agua debido a la atracción gravitacional de la Luna y el Sol, produciendo mareas altas aproximadamente dos veces al día en la orilla de los océanos. También se producen protuberancias similares en la capa de aire.
De todos los planetas y las lunas diversos en el sistema solar, solamente la Tierra parece ser capaz de sostener la vida en la forma como se conoce. La fuerza gravitacional de la masa del planeta es suficiente para mantenerla en la atmósfera. Esta envoltura delgada de gases surgió como resultado de condiciones fisicas cambiantes en la superficie de la Tierra y la evolución de la vida vegetal, y es parte integral del ecosistema planetario. Alterar la concentración de los gases componentes naturales de la atmósfera, o agregar otros 3 nuevos, puede tener serias consecuencias sobre los sistemas de vida de la Tierra.
La distancia de la Tierra al Sol asegura que la energía alcance al planeta a un indice suficiente para mantener la vida, pero no tan rápido como para que el agua se evapore o no se formen las moléculas necesarias para la vida. El agua existe en la Tierra en las formas líquida, sólida y gaseosa, hecho poco común entre los planetas, los otros están tan cercanos al Sol que están demasiado calientes, o tan lejanos, que están demasiado fríos.
El movimiento de la Tierra y su posición respecto al Sol y la Luna tienen efectos notables. Debido a la inclinación del eje terrestre, la revolución de un año de la Tierra alrededor del Sol cambia directamente la manera en que la luz del Sol incide en una u otra parte de la Tierra. Esta diferencia en calentamiento de partes distintas de la superficie de la Tierra produce las variaciones estacionales en clima. La rotación del planeta sobre su eje cada 24 horas produce un ciclo planetario de noche y día y (para los observadores en la Tierra) hace que parezca como si el Sol, los planetas, las estrellas y la Luna estuvieran girando alrededor de la Tierra. La combinación del movimiento de la Tierra y el de la Luna, en su órbita alrededor de aquélla, una vez aproximadamente en 28 días, da por resultado las fases lunares (con base en el cambio de ángulo en el cual se observa el lado iluminado de la Luna por la luz del Sol).
La Tierra posee diversos patrones climáticos, los cuales consisten en diferentes condiciones de temperatura, precipitación, humedad, viento, presión del aire y otros fenómenos atmosféricos. Estos patrones resultan de la interrelación de muchos factores. La fuente básica de energía es el calentamiento de la tierra, el océano y el aire por la radiación solar. La transferencia de energía calorífica en las interfases de la atmósfera con la tierra y los océanos produce capas a diferentes temperaturas en el aire y los océanos. Estas ascienden, descienden o se mezclan, dando lugar a vientos y corrientes oceánicas que transportan la energía calorífica entre las regiones cálidas y frías. La rotación de la Tierra curva el flujo de los vientos y las comentes marinas, los cuales se desvían aún más por la forma del planeta.
El ciclo del agua, en el que este liquido entra y sale de la atmósfera, desempeña un papel importante en la determinación de los patrones climáticos evaporación de la superficie, ascensión y enfriamiento, condensación en nubes y después en nieve o lluvia, y precipitación otra vez a la superficie, en donde se colecta en ríos, lagos y capas porosas de rocas. También hay grandes áreas en la superficie de la Tierra cubiertas de una capa gruesa de hielo (como la Antártida), la cual interactúa con la atmósfera y los océanos e incide sobre las variaciones climáticas en el ámbito mundial.
Los climas de la Tierra han cambiado radicalmente y se espera que lo sigan haciendo, sobre todo debido a los efectos de alteraciones geológicas, como el avance o el retroceso de los glaciares durante siglos o por enormes erupciones volcánicas en poco tiempo. Pero, incluso algunos cambios relativamente pequeños del contenido atmosférico o de la temperatura de los océanos, si duran mucho tiempo, pueden tener serias repercusiones en el clima.
La Tierra tiene muchos recursos de gran importancia para la vida de los seres humanos. Algunos de ellos son fácilmente renovables, otros se pueden renovar pero a un alto costo y otros más no son renovables. El planeta contiene una gran variedad de minerales, cuyas propiedades dependen de la historia de cómo se formaron, así como de los elementos de que se componen. La abundancia de estos minerales puede ser rara o ilimitada, pero la dificultad de extraerlos del ambiente es un aspecto tan importante como su abundancia. Una gran variedad de minerales constituyen fuentes de materiales básicos para la industria, tal es el caso del hierro, el aluminio, el magnesio y el cobre. Muchas de las fuentes más importantes se han ido agotando, haciendo cada vez más difícil y caro obtenerlos.
El agua dulce es un recurso esencial para la vida diaria y los procesos industriales. Se obtiene de ríos y lagos y del manto que se desplaza debajo de la superficie de la Tierra. Esta agua subterránea, la cual constituye una fuente importante para muchas personas, se ha acumulado al paso de un tiempo prolongado hasta alcanzar las cantidades que ahora se están usando. En algunos lugares se está agotando con suma rapidez. Además, muchas fuentes de agua dulce no se pueden utilizar debido a que están contaminadas.
El viento, las mareas y la radiación solar están disponibles de manera continua y pueden captarse para brindar fuentes de energía. En principio, los océanos, la atmósfera, los suelos, las criaturas marinas y los árboles son recursos renovables. Sin embargo, puede ser sumamente caro limpiar el aire y el agua contaminados, restablecer los bosques y las zonas de pesca destruidos, o restaurar o preservar los suelos erosionados debido al manejo deficiente de las áreas destinadas a la agricultura. Aunque los océanos y la atmósfera son muy grandes y tienen una gran capacidad para absorber y reciclar materiales de manera natural, tienen sus límites. Poseen una capacidad finita para resistir el cambio sin generar alteraciones ecológicas mayores, que también pueden tener efectos adversos sobre las actividades humanas. Comienzo

PROCESOS QUE LE DAN FORMA A LA TIERRA

El núcleo de la Tierra es caliente, está sometido a alta presión debido al peso de las capas suprayacentes y es más denso que su corteza rocosa. Las fuerzas internas del planeta causan cambios continuos en su superficie. La corteza sólida incluidos los continentes y las cuencas de los océanos consiste en secciones separadas que descansan en una capa caliente semisólida. Las placas de la corteza se desplazan sobre esta capa más blanda más o menos una pulgada o más por año chocando en algunos sitios y apartándose en otros. En el lugar de colisión, las placas de la corteza terrestre se pueden raspar en sus extremos o comprimir la tierra en pliegues que más tarde se convierten en cadenas montañosas (como las montañas Rocosas y los montes del Himalaya); o bien, una placa puede deslizarse bajo la otra y hundirse más en la tierra. A lo largo de los límites entre las placas que chocan, los sismos sacuden y rompen la superficie de la Tierra, y las erupciones volcánicas liberan roca fundida desde abajo, lo cual también forma montañas.
En donde las placas se separan por abajo de los continentes la tierra se hunde para formar amplios valles. Cuando la separación ocurre en las regiones delgadas de las placas que subyacen en las cuencas de los océanos, las rocas derretidas manan y constituyen fondos oceánicos cada vez más amplios. La actividad volcánica a lo largo de estas separaciones en medio del océano puede construir montañas submarinas, las cuales llegan a ser más altas que las que se encuentran en la superficie terrestre en ocasiones salen de la superficie del agua y forman islas en medio de los océanos (como Hawai).
Las olas, el viento, el agua y el hielo esculpen la superficie de la Tierra para producir accidentes geográficos distintos. Los ríos y el hielo glacial se llevan el suelo y fracturan las rocas, depositando finalmente los materiales en sedimentos o transportándolos en solución al mar. Algunos de estos efectos ocurren con rapidez y otros muy lentamente. Por ejemplo, muchas de las características de la superficie de la Tierra pueden rastrearse en la actualidad hasta el movimiento de avance y retroceso de los glaciares en gran parte del hemisferio norte durante un periodo que duró más de un millón de años. En contraste, el litoral puede cambiar casi de la noche a la mañana en la medida que las olas erosionan las costas y los vientos desplazan los materiales sueltos de la superficie y los depositan en otra parte.
Elementos como el carbón, el oxígeno, el nitrógeno vuelven y el azufre se reciclan lentamente a través de la tierra, los océanos y la atmósfera, cambiando sus localizaciones y combinaciones químicas. Los minerales se hacen, se disuelven y se n a formar sobre la superficie de la Tierra, en los océanos y en las capas calientes de alta presión que se encuentran debajo de la corteza. Los sedimentos de arena y conchas de organismos muertos se van enterrando gradualmente, se consolidan con los minerales disueltos, convirtiéndose a la larga nuevamente en roca sólida. Las rocas sedimentarias profundas pueden sufrir cambios por presión o calor, fundiéndose y volviendo a cristalizar en diferentes tipos de roca.
Las capas de roca enterrada se pueden impulsar de nuevo hacia arriba hasta convertirse en superficie terrestre e incluso formar montañas. Miles y miles de capas de roca sedimentaria atestiguan la larga historia de la Tierra y de formas de vida cambiantes cuyos vestigios se encuentran en capas sucesivas de roca.
Las plantas y los animales modifican la forma del paisaje de diversas maneras. La composición y la consistencia del suelo, y consecuentemente su fertilidad y resistencia a la erosión, reciben en gran medida la influencia de las raíces y restos de plantas, bacterias y hongos, que agregan material orgánico al suelo, y de insectos, gusanos y animales de madriguera, que lo desmenuzan. La presencia de vida también ha alterado la atmósfera terrestre. Las plantas absorben el dióxido de carbono del aire, utilizan el carbono para sintetizar azúcares y liberar oxígeno. Este proceso es el que explica la presencia de oxígeno en el aire actualmente.
Los accidentes geográficos, el clima y los recursos de la superficie de la Tierra afectan el lugar y la forma de vida de las personas, asi como la manera en que se ha desarrollado la historia humana. Al mismo tiempo, las actividades humanas han cambiado la superficie terrestre, los océanos y la atmósfera. Por ejemplo, la reducción de la cantidad de bosques que cubren la superficie de la Tierra ha provocado un incremento importante en el dióxido de carbono atmosférico, que puede conducir a su vez a un aumento en la temperatura promedio de la atmósfera y la superficie terrestres. El humo y otras sustancias que se desprenden de la actividad humana interactúan químicamente con la atmósfera y producen efectos indeseables, como esmog, lluvia ácida y tal vez un incremento en la nociva radiación ultravioleta que penetra en la atmósfera. La agricultura intensiva ha desnudado la tierra de vegetación y humus, creando prácticamente desiertos en algunas partes del mundo. Comienzo

ESTRUCTURA DE LA MATERIA

Las cosas del mundo físico parecen estar hechas de una variedad asombrosa de materiales, que difieren mucho en forma, densidad, flexibilidad, textura, dureza y color; en su capacidad para emitir, absorber, desviar o reflejar la luz; en la forma en que se comportan a diferentes temperaturas; en sus respuestas entre sí, y en cientos de otras formas. Sin embargo, a pesar de las apariencias, todo está constituido en realidad de una cantidad minima de tipos de materiales básicos combinados de diversos modos; se sabe que existen unos cíen en la actualidad los elementos químicos y sólo unos cuantos de ellos son abundantes en el universo. Cuando dos o más sustancias interactúan para formar otras nuevas, como sucede en la combustión, digestión, corrosión y cocción, los elementos componentes se combinan de maneras distintas. En tales recombinaciones, las propiedades de las combinaciones nuevas pueden ser muy diferentes de las sustancias originales. Un tipo especialmente importante de reacción entre las sustancias incluye la combinación del oxígeno con algo más, como sucede en la combustión o la oxidación.
La premisa básica de la teoría moderna de la materia es que los elementos constan de muy pocos tipos de átomos diferentes partículas tan pequeñas que no se pueden observar en un microscopio que se unen en distintas configuraciones para formar sustancias. Hay una o más pero nunca muchas clases de estos átomos para cada uno de los aproximadamente cien elementos.
Existen patrones distintos de propiedades entre los elementos. Hay grupos de éstos que tienen propiedades similares, incluyendo los metales altamente reactivos, los metales menos reactivos, los elementos no metálicos muy reactivos (como el cloro, el flúor, y el oxígeno), y algunos gases casi completamente no reactivos (como el helio y el neón). Algunos elementos no encajan en ninguna de estas categorías; entre ellos se encuentran el carbono y el hidrógeno, componentes esenciales de la materia viva. Cuando los elementos se disponen en una lista en orden por la masa de sus átomos, aparecen secuencias similares de propiedades una y otra vez en la lista.
Cada átomo está compuesto de un núcleo central cargado positivamente sólo una fracción muy pequeña del volumen del átomo, pero contiene la mayor parte de su masa, rodeado por una nube de electrones mucho más ligeros con carga negativa. El número de electrones en un átomo que va desde uno hasta casi cien define el número de partículas cargadas, o protones, en el núcleo, y determina la forma en que el átomo se unirá a otros átomos para formar moléculas. Las partículas eléctricamente neutras (neutrones) que se encuentran en el núcleo se agregan a la masa de éste, pero no afectan el número de electrones y, por tanto, casi no tienen efecto sobre las uniones del átomo con otros átomos (su comportamiento químico). Por ejemplo, un bloque de carbono puro está constituido de dos tipos, o isótopos, de átomos de carbono que difieren algo en masa pero que tienen propiedades químicas casi idénticas. Los científicos siguen investigando los átomos y han descubierto incluso constituyentes más pequeños que componen los electrones, neutrones y protones.
Cada sustancia puede existir en varios estados diferentes, dependiendo de la temperatura y la presión. Así como el agua puede existir en forma de hielo, agua y vapor, todas las sustancias salvo unas cuantas pueden tomar también las formas sólida, líquida y gaseosa. Cuando la materia se enfría lo suficiente, los átomos o las moléculas se anclan en un lugar, en una forma más o menos ordenada, para constituir sólidos. Aumentar la temperatura significa incrementar la energía cinética promedio de los átomos. Así, si aumenta la temperatura, los átomos y las moléculas se agitan más y se separan ligeramente; esto es, el material se expande. A temperaturas más altas, los átomos y las moléculas se agitan aún más y se pueden deslizar unos sobre otros manteniendo sus enlaces laxos, como sucede en el estado líquido. A temperaturas aún más altas, la agitación de los átomos y las moléculas supera la atracción entre ellas y pueden moverse libremente alrededor, interactuando sólo cuando están muy cercanas; por lo general se separan unas de otras para constituir un estado gaseoso.
Cuando la temperatura aumenta todavía más, la energía de las colisiones descompone todas las moléculas en átomos, al tiempo que impacta los electrones y los aleja de los átomos, produciendo iones. A temperaturas extremadamente altas, los núcleos de los átomos pueden estar tan cerca durante las colisiones que resultan afectados por las poderosas fuerzas nucleares internas, y pueden ocurrir reacciones nucleares.
La disposición de los electrones más externos en un átomo determina el modo en que éste se puede unir a otros y formar materiales. Los enlaces se forman entre los átomos cuando los electrones son transferidos de un átomo a otro, o cuando los electrones se comparten más o menos entre ellos. Dependiendo de qué tipo de enlace se lleve a cabo, los átomos se pueden unir en mezclas caóticas, en moléculas distintas que tienen un número y configuración uniforme de átomos, o en los patrones repetidos simétricamente de las disposiciones cristalinas. Las configuraciones moleculares pueden ser tan simples como pares de átomos idénticos (tal es es el caso de las moléculas de oxígeno) o tan complejas como cadenas plegadas y enlaces cruzados de miles de átomos de largo (como las moléculas de proteína y ADN). Las formas exactas de estas moléculas complejas constituyen un factor critico en la manera en que interactúan entre sí. Los arreglos cristalinos pueden ser enteramente regulares o estar permeados con irregularidades de composición y estructura. Las pequeñas diferencias en composición y estructura pueden dar materiales con propiedades muy distintas.
La configuración de los electrones en los átomos determina qué reacciones pueden ocurrir entre estos últimos, cuánta energía se requiere para hacer que suceda la reacción, y cuánta energía se libera en ella. Los indices a los cuales ocurren las reacciones en un gran conjunto de átomos dependen en gran medida de la frecuencia con la que los reactivos se encuentran uno con otro; por tanto, dependen de su concentración y de la rapidez con que se mueven, es decir, de la temperatura. Los indices de reacción se pueden afectar en gran medida por concentraciones muy pequeñas de algunos átomos y moléculas que se unen a las sustancias que van a reaccionar en una forma que la posiciona adecuadamente para unirse entre sí, o las cuales tienen un estado excitado que puede transferir la cantidad correcta de energía para que suceda la reacción. En particular, las reacciones que ocurren en soluciones acuosas pueden afectarse de manera significativa por la acidez de la solución.
Cada uno de los elementos que constituyen las sustancias conocidas consisten en sólo unos cuantos isótopos que aparecen de manera natural. La mayor parte de otros posibles isótopos de cualquier elemento son inestables y, si llegan a formarse, tarde o temprano se desintegrarán en algún isótopo de otro elemento (que por sí mismo puede ser inestable). La desintegración incluye la emisión de partículas y radiación del núcleo, esto es, radiactividad. En los materiales de la Tierra, hay pequeñas proporciones de algunos isótopos radiactivos que quedaron de la formación original de elementos pesados en las estrellas. Algunos se formaron en épocas más recientes debido a impactos de partículas nucleares provenientes del espacio, o a partir de la desintegración nuclear de otros isótopos. Juntos, estos isótopos producen un bajo nivel de radiación de fondo en el ambiente general.
No es posible predecir cuándo se va a desintegrar un núcleo inestable. Se puede determinar solamente qué fracción de un conjunto de núcleos idénticos tienen la posibilidad de desintegrarse en un periodo determinado. La vida media de un isótopo inestable es el tiempo que tarda en desintegrarse la mitad de los núcleos en cualquier muestra de ese isótopo; las vidas medias de isótopos diferentes van de menos de una millonésima de segundo hasta muchos millones de años. La vida media de cualquier isótopo particular es constante y no se ve afectada por condiciones físicas, como presión y temperatura. Por tanto, la radiactividad se puede utilizar para estimar el paso del tiempo, midiendo la fracción de núcleos que ya se han desintegrado. Por ejemplo, la fracción de un isótopo inestable de vida media larga que permanece en una muestra de roca, puede utilizarse para estimar cuánto tiempo hace que se formó dicha roca. Comienzo

TRANSFORMACIONES DE LA ENERGÍA

La energía aparece en muchas formas, incluida la radiación, el movimiento de los cuerpos, el estado de excitación de los átomos y la tensión intra e itermolecular. Todas estas formas son equivalentes en un sentido importante; es decir, una forma puede transformarse en otra. La mayor parte de lo que sucede en el universo como el colapso y la explosión de estrellas, el crecimiento y la descomposición biológicos, la operación de máquinas y computadorasincluye una forma de energía que se transforma en otra.
Las formas de energía se pueden describir de diferentes maneras: la energía del sonido es sobre todo el movimiento regular de atrás hacia adelante de las moléculas; la energía calorífica es el movimiento aleatorio de moléculas; la energía gravitacional aparece en la separación de masas que se atraen mutuamente; la energía almacenada en tensiones mecánicas incluye la separación de cargas eléctricas que se atraen entre sí. Aunque las diversas formas parecen muy distintas, cada una de ellas se puede medir de un modo que hace posible calcular qué tanto de una forma puede convertirse en otra. Cuando disminuye la cantidad de energía en un lugar o en una forma, la cantidad en otro sitio o en otra forma aumenta en una cantidad equivalente. Por tanto, si la energía no se filtra hacia dentro o hacia fuera a través de los límites de un sistema, la energía total de las diferentes formas en el sistema no cambia, no importa qué tipo de transformaciones graduales o violentas ocurran realmente en él.
Pero la energía tiende a escaparse a través de los límites. En particular, las transformaciones de energía generalmente dan por resultado la producción de algo de calor, el cual se disipa por radiación o conducción (como sucede en las máquinas, los alambres eléctricos, los tanques de agua caliente, el cuerpo humano y los sistemas estereofónicos). Además, cuando el calor sufre conducción o radiación hacia un líquido, se establecen corrientes que suelen favorecer la transferencia de calor. Los materiales que no conducen bien el calor se pueden utilizar para reducir la pérdida de éste, aunque nunca puede evitarse por completo la fuga calorífica. Por tanto, la cantidad total de energía disponible para la transformación casi siempre es decreciente. Por ejemplo, casi toda la energía almacenada en las moléculas de gasolina que se utiliza durante un viaje en automóvil se disipa a través de la fricción y el tubo de escape, produciendo un ligero aumento de temperatura en el vehículo, la carretera y el aire. Pero incluso si tal energía difusa se pudiera detener, tendería a distribuirse de modo uniforme y, por tanto, ya no podría volverse a utilizar. Esto se debe a que la energía puede provocar transformaciones solamente cuando se concentra más en algunos sitios que en otros, como en las caídas de agua, las moléculas de alta energía de combustibles y alimentos, los núcleos inestables y la radiación que proviene del Sol intensamente caliente. Cuando la energía se transforma en energía calorífica que se difunde a todas partes, es menos probable que ocurran más transformaciones.
La razón por la que el calor tiende siempre a difundirse de lugares más calientes a otros más fríos es un asunto de probabilidad. La energía calorífica en un material consiste de movimientos desordenados de sus átomos o moléculas que se encuentran en colisión perpetua. Cuando un gran número de átomos o moléculas en una región de un material chocan en forma aleatoria y repetida con las de una región vecina, hay mucho más maneras en las que su energía de movimiento aleatorio puede terminar por distribuirse casi igualmente en ambas regiones en lugar de concentrarse en una sola. Por consiguiente, es mucho más probable que ocurra la distribución desordenada de energia calorifica a todas partes que la concentración más ordenada en un lugar. De manera más general, en cualesquiera interacciones de átomos o moléculas, la probabilidad estadistica establece que terminarán en un mayor desorden que con el que empezaron.
Sin embargo, es completamente posible que en algunos sistemas aumente el orden mientras que en los sistemas conectados a ellos el desorden se incrementa aún más. Las células de un organismo humano, por ejemplo, siempre están ocupadas en incrementar el orden, como sucede en la síntesis de moléculas complejas y la formación de estructuras corporales. Pero esto ocurre al costo de aumentar el desorden circundante aún más como descomponer la estructura molecular de los alimentos que se consumen y calentar los alrededores. El asunto es que la cantidad total de desorden tiende siempre a aumentar.
Se asocian diferentes niveles de energía con diversas configuraciones de átomos en las moléculas. Algunos cambios en la configuración requieren energía adicional, en tanto que otros la liberan. Por ejemplo, tiene que suministrarse energía calorífica para iniciar el fuego con carbón (mediante la evaporación, algunos átomos de carbono se separan de otros en el carbón); sin embargo, cuando las moléculas de oxígeno se combinan con los átomos de carbono en la configuración de baja energía de una molécula de dióxido de carbono, se libera mucho más energía como calor y luz. O una molécula de clorofila se puede excitar hacia una configuración de alta energía por la luz solar; la clorofila, por su parte, excita a las moléculas de dióxido de carbono y agua de modo tal que pueden unirse, a través de varios pasos, en la configuración de alta energía de una molécula de azúcar (más cierta cantidad de oxígeno regenerado). Más tarde, la molécula de azúcar puede interactuar con el oxígeno para producir moléculas de dióxido de carbono y agua otra vez, transfiriendo la energía adicional de la luz solar todavía a otras moléculas.
Es evidente que la energía y la materia se presentan en unidades discretas en el nivel molecular y niveles inferiores: cuando la energía de un átomo o una molécula cambia de un valor a otro, lo hace en saltos definidos, sin valores posibles entre ellos. Estos efectos de cuanto producen fenómenos en la escala atómica muy diferentes de aquéllos con los que se está familiarizado. Cuando la radiación encuentra un átomo, puede excitarlo a un nivel más alto de energía interna solamente si puede aportar la cantidad correcta de energía para el paso. También ocurre lo inverso: cuando el nivel de energía de un átomo se relaja por un paso, se produce una cantidad discreta (cuanto) de energía de radiación. Por tanto, la luz emitida o absorbida por una sustancia puede servir para identificar de qué sustancia se trata, no importa si está en el laboratorio o en la superficie de una estrella distante.
Las reacciones en los núcleos de los átomos incluyen cambios de energía mucho más grandes que las reacciones entre las estructuras de los electrones externos de los átomos (esto es, reacciones químicas). Cuando núcleos muy pesados, como los de uranio o plutonio se dividen en otros de peso medio, o cuando núcleos muy ligeros, como los de hidrógeno y helio, se combinan con otros más pesados, se liberan grandes cantidades de energía en forma de radiación y partículas que se mueven con rapidez. La fisión de algunos núcleos pesados ocurre de manera espontánea, produciendo neutrones adicionales que inducen la fisión en más núcleos, y así sucesivamente, dando lugar a una reacción en cadena. Sin embargo, la fisión de núcleos ocurre solamente que choquen a velocidades muy altas (superando la repulsión eléctrica entre ellos), como las colisiones que ocurren a temperaturas muy altas producidas dentro de una estrella o por una explosión por fisión. Comienzo

MOVIMIENTO

El movimiento es también una parte del mundo fisico, como lo son la materia y la energía. Todo se mueve átomos y moléculas; estrellas, planetas y lunas; la Tierra y su superficie y todo aquello que se encuentra sobre esta última; todos los seres vivos y cada una de sus partes. Nada en el universo está en reposo.
Puesto que todo se mueve, no hay un punto de referencia fijo contra el cual se pueda describir el movimiento de las cosas. Todo movimiento es relativo al punto u objeto que se elige. Así, un autobús estacionado no tiene movimiento con referencia a la superficie de la Tierra; pero, puesto que ésta gira sobre su eje, el autobús se está moviendo aproximadamente a mil millas por hora alrededor del centro del planeta. Si el autobús se está desplazando en la carretera y una persona camina por el pasillo, ésta tiene una velocidad con referencia al autobús, otra respecto de la carretera y una más en relación con el centro de la Tierra. No hay un punto en el espacio que pueda servir como referencia de lo que está realmente en movimiento.
Las alteraciones en el movimiento la aceleración, la desaceleración, los cambios de la dirección se deben a los efectos de las fuerzas. Cualquier objeto mantiene una velocidad y dirección consllantes de movimiento a menos que actúe una fuerza externa no equilibrada sobre él. Cuando una fuerza tal actúa sobre un objeto, cambia el movimiento de éste. Dependiendo de la dirección de la fuerza respecto a la dirección del movimiento, el objeto puede cambiar su velocidad (una manzana que cae) o la dirección de su movimiento (la Luna y su órbita curva), o ambos (una pelota en vuelo). Mientras más grande es la intensidad de la fuerza no equilibrada, mayor es la rapidez con la que cambia la velocidad o la dirección de movimiento de un objeto; cuanto mayor es la masa de un objeto, menor es la rapidez con la que se modifica su velocidad o dirección en respuesta a cualquier fuerza. Y cuando un objeto A ejerce una fuerza sobre un objeto B, B ejerce una fuerza igualmente intensa sobre A. Por ejemplo, un clavo de hierro A atrae a un imán B con la misma fuerza que el imán B atrae al clavo de hierro A, pero en dirección opuesta. En situaciones más familiares, la fricción entre superficies crea fuerzas que entran en juego y complican la descripción del movimiento, aunque los principios básicos son aplicables todavía.
Algunos movimientos complicados se pueden describir de manera más conveniente, no en términos de fuerzas directamente sino en descripciones sumarias de los patrones de movimiento, como las vibraciones y ondas. La vibración incluye partes de un sistema que se mueve de atrás hacia adelante en el mismo lugar, de tal forma que el movimiento se puede resumir en la frecuencia con la que se repite y la distancia a la que una partícula se desplaza durante un ciclo. Otra característica sumaria es el índice al cual la vibración, cuando se deja a sí misma, desaparece gradualmente a medida que se disipa la energía.
Las vibraciones pueden causar una perturbación itinerante que se propaga a partir de su fuente. Los ejemplos de tales alteraciones son el sonido, la luz y los sismos, los cuales revelan una conducta muy semejante a la de las conocidas ondas superficiales en el agua, que cambian su dirección en los límites entre medios, se difractan en las esquinas y se interfieren entre sí de manera predecible. Por tanto, se habla de ondas sonoras, ondas de luz, etc., y las matemáticas de la conducta de las ondas son de utilidad para describir todos estos fenómenos. El comportamiento de las ondas también se puede describir en términos de la rapidez con que se propaga la perturbación, y de la distancia entre las crestas sucesivas de esta última (la longitud de onda).
La longitud de onda observada depende en parte del movimiento relativo de la fuente de la onda respecto al observador. Si la fuente está en movimiento hacia el observador, o viceversa, la onda está en efecto comprimida y se percibe como más corta; si la fuente y el observador se están alejando, la onda de hecho está estirada y se percibe como más larga. Ambos efectos son obvios en el cambio aparente de tono del claxon de un automóvil cuando pasa al observador. Por tanto, estos cambios aparentes en la longitud de onda ofrecen información sobre el movimiento relativo. Un ejemplo muy significativo de esta situación es el cambio en la longitud de onda de la luz procedente de estrellas y galaxias. Debido a que la luz emitida por la mayor parte de ellas cambia hacia longitudes de onda más largas, esto es, hacia el extremo rojo del espectro, los astrónomos concluyen que las galaxias se alejan entre sí y, por tanto, que estamos en un universo que se expande globalmente.
La longitud de onda puede influir de manera importante en la forma en que la onda interactúa con la materia en qué tan bien se trasmite, se absorbe, se refleja o se difracta. Por ejemplo, los modos en que las ondas de choque de diferentes longitudes de ondas viajan y se reflejan en las capas de roca constituyen una clave importante para averiguar cómo es el interior de la Tierra. La interacción de las ondas electromagnéticas con la materia varía en gran medida con la longitud de onda, tanto en la manera en que se producen como en sus efectos. Tipos diferentes de ondas, aunque un tanto traslapantes, han recibido distintos nombres: ondas de radio, microondas, radiación infrarroja o calor radiante, luz visible, radiación ultravioleta, rayos x y rayos gamma.
Los materiales que permiten pasar a través de ellos una gama de longitudes de onda, pueden absorber completamente otras. Por ejemplo, algunos gases en la atmósfera, incluyendo el dióxido de carbono y el vapor de agua, son transparentes a la mayor parte de la luz que reciben del Sol, pero no a la radiación infrarroja de la superficie caliente de la Tierra. En consecuencia, la energía calorífica se ve atrapada en la atmósfera. La temperatura de la Tierra aumenta hasta que la radiación que disipa alcanza un equilibrio con la radiación que absorbe del Sol. El ozono, otro gas atmosférico, absorbe cierta cantidad de la radiación ultravioleta de la luz solar las longitudes de onda que producen quemaduras, bronceado y cáncer en la piel de los seres humanos.
Incluso dentro de los limites mencionados de la radiación electromagnética, diferentes longitudes de onda interactúan con la materia de maneras distintas. El ejemplo más familiar es que las diversas longitudes de onda de la luz visible interactúan con los ojos de manera diferente, dando la sensación de distintos colóres. Las cosas parecen tener diferentes colores porque reflejan o dispersan la luz visible de algunas longitudes de ondas más que otras, como en el caso de las plantas que absorben las longitudes de onda del azul y el rojo, y reflejan solamente el verde y el amarillo. Cuando la atmósfera dispersa la luz del Sol, la cual es una mezcla de todas las longitudes de onda, la luz de longitud de onda corta (que da la sensación del azul) es diseminada mucho más por las moléculas del aire que la luz de longitud de onda larga (el rojo). Por tanto, la atmósfera se ve azul, y el Sol, visto a través de ella en una luz sin dispersar, parece rojizo.Comienzo

FUERZAS DE LA NATURALEZA

Los dos tipos de fuerza que se conocen comúnmente son la gravitacional y la electromagnética.
Todo en el universo ejerce fuerzas gravitacionales sobre cualquier cosa, aunque los efectos se notan con facilidad sólo cuando interviene por lo menos una masa muy grande, como una estrella o un planeta. La gravedad es la fuerza que se encuentra detrás de la caída de la lluvia, la fuerza de los ríos, el pulso de las mareas; atrae la materia de los planetas y las estrellas hacia sus centros para formar esferas, sostiene a los planetas en órbita y reúne el polvo cósmico para formar estrellas. Se cree que las fuerzas gravitacionales implican un campo de gravedad que afecta el espacio que se encuentra alrededor de cualquier masa. La fuerza del campo alrededor de un objeto es proporcional a su masa y disminuye con la distancia a partir de su centro. Por ejemplo, la atracción de la Tierra sobre un individuo dependerá de si la persona se encuentra en la playa o muy alejado en el espacio.
Las fuerzas electromagnéticas que actúan dentro de los átomos y entre ellos, son inmensamente más poderosas que las fuerzas gravitacionales que actúan entre ellos. En una escala atómica, las fuerzas eléctricas entre los protones y electrones con cargas opuestas mantienen a los átomos y a las moléculas juntos y así intervienen en todas las reacciones químicas. En una escala más grande, estas fuerzas conservan a los materiales sólidos y liquidos compactos y actúan entre los objetos cuando están en contacto, por ejemplo, la fricción entre una toalla y la espalda de una persona, el impacto de un bate sobre una pelota. Por lo general, no se nota la naturaleza eléctrica de muchas fuerzas conocidas porque las densidades casi iguales de las cargas eléctricas positivas y negativas en los materiales neutralizan aproximadamente los efectos mutuos fuera del material. Pero incluso un mínimo desequilibrio en estas cargas opuestas producirá fenómenos que van desde chispazos eléctricos y ropas adherentes hasta relámpagos.
Dependiendo de la cantidad de cargas eléctricas libres para moverse en los materiales, éstos muestran grandes diferencias en qué tanto responden a las fuerzas eléctricas. En un extremo, un material aislante de la electricidad, como el vidrio o el plástico, en condiciones normales no permite el paso de ninguna carga a través de él. En el otro extremo, un material conductor de la electricidad, como el cobre, ofrecerá muy poca resistencia al movimiento de cargas, de tal forma que las fuerzas eléctricas que actúan sobre él producen con facilidad una corriente de cargas. (La mayor parte de los cables eléctricos son una combinación de extremos: un conductor muy bueno cubierto por un aislante muy bueno.) De hecho, a temperaturas muy bajas, ciertos materiales pueden convertirse en superconductores, que ofrecen resistencia cero. Entre los materiales de baja y alta resistencia se encuentran los materiales semiconductores, en los cuales la facilidad con que se mueven las cargas puede variar en gran medida con cambios sutiles en la composición o las condiciones; estos materiales se emplean en transistores y ch¡ps de computadora para controlar señales eléctricas. El agua normalmente contiene fragmentos moleculares cargados de impurezas en solución que son móviles; por tanto, dicho líquido es un conductor bastante bueno.
Las fuerzas magnéticas están íntimamente relacionadas con las fuerzas eléctricas las dos se pueden visualizar como aspectos diferentes de una fuerza electromagnética única. Ambas actúan por medio de campos: una carga eléctrica tiene un campo eléctrico en su espacio circundante, el cual afecta a otras cargas, y un imán tiene un campo magnético alrededor de él, que afecta a otros imanes. Lo que es más, las cargas eléctricas en movimiento producen campos magnéticos y son afectadas por campos similares. Esta influencia es la base de muchos fenómenos naturales. Por ejemplo, las corrientes eléctricas que circulan en el centro de la Tierra le confieren a ésta un gran campo magnético, el cual se detecta por la orientación de las brújulas.
La interrelación de las fuerzas eléctricas y magnéticas es también la base de muchos diseños tecnológicos, como motores eléctricos (en los cuales la corriente produce movimiento), generadores (en los cuales el movimiento produce corriente) y los tubos de televisión (en los cuales un haz de cargas eléctricas en movimiento se desvía hacia atrás y hacia adelante por cambios periódicos de un campo magnético). De manera más general, un campo eléctrico oscilante induce un campo magnético y viceversa.
Otros tipos de fuerzas operan solamente a escala subatómica. Por ejemplo, la fuerza nuclear que conserva juntas a las partículas dentro del núcleo atómico es mucho más fuerte que la fuerza eléctrica, como lo evidencian las cantidades relativamente grandes de energía liberada por las interacciones nucleares.

martes, 23 de noviembre de 2010

Study Guide 5th grade

Study Guide 5th grade

Vocabulary: Caterpillar, sketched, disrespect, cocoon, emerge, migrant, unscrewed, diplomat, representatives, visa, issue, refugees, agreement, superiors, cable, traditions, behavior, sacred, benefactor, astonished, gratitude, procession, distribution, recommend, environment, contribute, enthusiastic, investigation.

Examples:
Mexicans have many traditions that they celebrate.
Everyone must take care of our environment and recycle.
Many migrant workers go to work in the United States.

Past or present:
Examples
Yesterday we ______________ the park.  (Visit/Visited)
Angelica ______________ tired now. (looks, looked)

Multiplying Decimals by Decimals
Step 1 Multiply as though both numbers were whole numbers.
0.89 x 3.7 = 3293
Step 2 Write the decimal point in the product.
0.89 x 3.7= 3.293

Variable and Expressions
We call n a variable because it stands for a value that can change or vary. $5.50 x n is called and algebraic expression. An algebraic expression is a mathematical phrase involving variables, numbers and operations.
Examples:
Addition 4 + a, or a +4        Subtraction b-4    Multiplication 4 x c, or 4c  
Division d ÷ 4, or  d
4                               Example: n=7 and n = 8:
n – 3 = 4;5

Operation
Word Phrase
Algebraic Expression
Addition
A number plus 18.
Sum of a number and 18
18 more than a number
A number increased by 18

x + 18
Subtraction
A number minus 6
The difference between a number and 6
6 less than a number. A number decreased by 6



x - 6
Multiplication
3 times a number, A number multiplied by 3, The product of a 3 and a number.
3 x n
3 n

Division
A number divided by 12:
The quotient of a number and 12

m ÷ 12 , m
               12